direct product, metabelian, supersoluble, monomial, A-group
Aliases: C9×C33⋊C2, C33⋊9C18, C34.14C6, (C33×C9)⋊3C2, C32⋊6(S3×C9), (C32×C9)⋊28S3, C33.86(C3×S3), C3⋊(C9×C3⋊S3), (C3×C9)⋊9(C3⋊S3), C32.53(C3×C3⋊S3), C3.5(C3×C33⋊C2), (C3×C33⋊C2).3C3, SmallGroup(486,241)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C9×C33⋊C2 |
Generators and relations for C9×C33⋊C2
G = < a,b,c,d,e | a9=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 948 in 324 conjugacy classes, 87 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C32, C32, C18, C3×S3, C3⋊S3, C3×C9, C3×C9, C33, C33, C33, S3×C9, C3×C3⋊S3, C33⋊C2, C32×C9, C32×C9, C34, C9×C3⋊S3, C3×C33⋊C2, C33×C9, C9×C33⋊C2
Quotients: C1, C2, C3, S3, C6, C9, C18, C3×S3, C3⋊S3, S3×C9, C3×C3⋊S3, C33⋊C2, C9×C3⋊S3, C3×C33⋊C2, C9×C33⋊C2
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 107 134)(2 108 135)(3 100 127)(4 101 128)(5 102 129)(6 103 130)(7 104 131)(8 105 132)(9 106 133)(10 51 28)(11 52 29)(12 53 30)(13 54 31)(14 46 32)(15 47 33)(16 48 34)(17 49 35)(18 50 36)(19 157 60)(20 158 61)(21 159 62)(22 160 63)(23 161 55)(24 162 56)(25 154 57)(26 155 58)(27 156 59)(37 78 64)(38 79 65)(39 80 66)(40 81 67)(41 73 68)(42 74 69)(43 75 70)(44 76 71)(45 77 72)(82 139 95)(83 140 96)(84 141 97)(85 142 98)(86 143 99)(87 144 91)(88 136 92)(89 137 93)(90 138 94)(109 121 150)(110 122 151)(111 123 152)(112 124 153)(113 125 145)(114 126 146)(115 118 147)(116 119 148)(117 120 149)
(1 109 95)(2 110 96)(3 111 97)(4 112 98)(5 113 99)(6 114 91)(7 115 92)(8 116 93)(9 117 94)(10 156 67)(11 157 68)(12 158 69)(13 159 70)(14 160 71)(15 161 72)(16 162 64)(17 154 65)(18 155 66)(19 73 29)(20 74 30)(21 75 31)(22 76 32)(23 77 33)(24 78 34)(25 79 35)(26 80 36)(27 81 28)(37 48 56)(38 49 57)(39 50 58)(40 51 59)(41 52 60)(42 53 61)(43 54 62)(44 46 63)(45 47 55)(82 107 121)(83 108 122)(84 100 123)(85 101 124)(86 102 125)(87 103 126)(88 104 118)(89 105 119)(90 106 120)(127 152 141)(128 153 142)(129 145 143)(130 146 144)(131 147 136)(132 148 137)(133 149 138)(134 150 139)(135 151 140)
(1 85 147)(2 86 148)(3 87 149)(4 88 150)(5 89 151)(6 90 152)(7 82 153)(8 83 145)(9 84 146)(10 37 21)(11 38 22)(12 39 23)(13 40 24)(14 41 25)(15 42 26)(16 43 27)(17 44 19)(18 45 20)(28 64 62)(29 65 63)(30 66 55)(31 67 56)(32 68 57)(33 69 58)(34 70 59)(35 71 60)(36 72 61)(46 73 154)(47 74 155)(48 75 156)(49 76 157)(50 77 158)(51 78 159)(52 79 160)(53 80 161)(54 81 162)(91 120 127)(92 121 128)(93 122 129)(94 123 130)(95 124 131)(96 125 132)(97 126 133)(98 118 134)(99 119 135)(100 144 117)(101 136 109)(102 137 110)(103 138 111)(104 139 112)(105 140 113)(106 141 114)(107 142 115)(108 143 116)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 81)(7 73)(8 74)(9 75)(10 144)(11 136)(12 137)(13 138)(14 139)(15 140)(16 141)(17 142)(18 143)(19 115)(20 116)(21 117)(22 109)(23 110)(24 111)(25 112)(26 113)(27 114)(28 91)(29 92)(30 93)(31 94)(32 95)(33 96)(34 97)(35 98)(36 99)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 82)(47 83)(48 84)(49 85)(50 86)(51 87)(52 88)(53 89)(54 90)(55 122)(56 123)(57 124)(58 125)(59 126)(60 118)(61 119)(62 120)(63 121)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)(151 161)(152 162)(153 154)
G:=sub<Sym(162)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,107,134)(2,108,135)(3,100,127)(4,101,128)(5,102,129)(6,103,130)(7,104,131)(8,105,132)(9,106,133)(10,51,28)(11,52,29)(12,53,30)(13,54,31)(14,46,32)(15,47,33)(16,48,34)(17,49,35)(18,50,36)(19,157,60)(20,158,61)(21,159,62)(22,160,63)(23,161,55)(24,162,56)(25,154,57)(26,155,58)(27,156,59)(37,78,64)(38,79,65)(39,80,66)(40,81,67)(41,73,68)(42,74,69)(43,75,70)(44,76,71)(45,77,72)(82,139,95)(83,140,96)(84,141,97)(85,142,98)(86,143,99)(87,144,91)(88,136,92)(89,137,93)(90,138,94)(109,121,150)(110,122,151)(111,123,152)(112,124,153)(113,125,145)(114,126,146)(115,118,147)(116,119,148)(117,120,149), (1,109,95)(2,110,96)(3,111,97)(4,112,98)(5,113,99)(6,114,91)(7,115,92)(8,116,93)(9,117,94)(10,156,67)(11,157,68)(12,158,69)(13,159,70)(14,160,71)(15,161,72)(16,162,64)(17,154,65)(18,155,66)(19,73,29)(20,74,30)(21,75,31)(22,76,32)(23,77,33)(24,78,34)(25,79,35)(26,80,36)(27,81,28)(37,48,56)(38,49,57)(39,50,58)(40,51,59)(41,52,60)(42,53,61)(43,54,62)(44,46,63)(45,47,55)(82,107,121)(83,108,122)(84,100,123)(85,101,124)(86,102,125)(87,103,126)(88,104,118)(89,105,119)(90,106,120)(127,152,141)(128,153,142)(129,145,143)(130,146,144)(131,147,136)(132,148,137)(133,149,138)(134,150,139)(135,151,140), (1,85,147)(2,86,148)(3,87,149)(4,88,150)(5,89,151)(6,90,152)(7,82,153)(8,83,145)(9,84,146)(10,37,21)(11,38,22)(12,39,23)(13,40,24)(14,41,25)(15,42,26)(16,43,27)(17,44,19)(18,45,20)(28,64,62)(29,65,63)(30,66,55)(31,67,56)(32,68,57)(33,69,58)(34,70,59)(35,71,60)(36,72,61)(46,73,154)(47,74,155)(48,75,156)(49,76,157)(50,77,158)(51,78,159)(52,79,160)(53,80,161)(54,81,162)(91,120,127)(92,121,128)(93,122,129)(94,123,130)(95,124,131)(96,125,132)(97,126,133)(98,118,134)(99,119,135)(100,144,117)(101,136,109)(102,137,110)(103,138,111)(104,139,112)(105,140,113)(106,141,114)(107,142,115)(108,143,116), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,73)(8,74)(9,75)(10,144)(11,136)(12,137)(13,138)(14,139)(15,140)(16,141)(17,142)(18,143)(19,115)(20,116)(21,117)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,82)(47,83)(48,84)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,122)(56,123)(57,124)(58,125)(59,126)(60,118)(61,119)(62,120)(63,121)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160)(151,161)(152,162)(153,154)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,107,134)(2,108,135)(3,100,127)(4,101,128)(5,102,129)(6,103,130)(7,104,131)(8,105,132)(9,106,133)(10,51,28)(11,52,29)(12,53,30)(13,54,31)(14,46,32)(15,47,33)(16,48,34)(17,49,35)(18,50,36)(19,157,60)(20,158,61)(21,159,62)(22,160,63)(23,161,55)(24,162,56)(25,154,57)(26,155,58)(27,156,59)(37,78,64)(38,79,65)(39,80,66)(40,81,67)(41,73,68)(42,74,69)(43,75,70)(44,76,71)(45,77,72)(82,139,95)(83,140,96)(84,141,97)(85,142,98)(86,143,99)(87,144,91)(88,136,92)(89,137,93)(90,138,94)(109,121,150)(110,122,151)(111,123,152)(112,124,153)(113,125,145)(114,126,146)(115,118,147)(116,119,148)(117,120,149), (1,109,95)(2,110,96)(3,111,97)(4,112,98)(5,113,99)(6,114,91)(7,115,92)(8,116,93)(9,117,94)(10,156,67)(11,157,68)(12,158,69)(13,159,70)(14,160,71)(15,161,72)(16,162,64)(17,154,65)(18,155,66)(19,73,29)(20,74,30)(21,75,31)(22,76,32)(23,77,33)(24,78,34)(25,79,35)(26,80,36)(27,81,28)(37,48,56)(38,49,57)(39,50,58)(40,51,59)(41,52,60)(42,53,61)(43,54,62)(44,46,63)(45,47,55)(82,107,121)(83,108,122)(84,100,123)(85,101,124)(86,102,125)(87,103,126)(88,104,118)(89,105,119)(90,106,120)(127,152,141)(128,153,142)(129,145,143)(130,146,144)(131,147,136)(132,148,137)(133,149,138)(134,150,139)(135,151,140), (1,85,147)(2,86,148)(3,87,149)(4,88,150)(5,89,151)(6,90,152)(7,82,153)(8,83,145)(9,84,146)(10,37,21)(11,38,22)(12,39,23)(13,40,24)(14,41,25)(15,42,26)(16,43,27)(17,44,19)(18,45,20)(28,64,62)(29,65,63)(30,66,55)(31,67,56)(32,68,57)(33,69,58)(34,70,59)(35,71,60)(36,72,61)(46,73,154)(47,74,155)(48,75,156)(49,76,157)(50,77,158)(51,78,159)(52,79,160)(53,80,161)(54,81,162)(91,120,127)(92,121,128)(93,122,129)(94,123,130)(95,124,131)(96,125,132)(97,126,133)(98,118,134)(99,119,135)(100,144,117)(101,136,109)(102,137,110)(103,138,111)(104,139,112)(105,140,113)(106,141,114)(107,142,115)(108,143,116), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,73)(8,74)(9,75)(10,144)(11,136)(12,137)(13,138)(14,139)(15,140)(16,141)(17,142)(18,143)(19,115)(20,116)(21,117)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,82)(47,83)(48,84)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,122)(56,123)(57,124)(58,125)(59,126)(60,118)(61,119)(62,120)(63,121)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160)(151,161)(152,162)(153,154) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,107,134),(2,108,135),(3,100,127),(4,101,128),(5,102,129),(6,103,130),(7,104,131),(8,105,132),(9,106,133),(10,51,28),(11,52,29),(12,53,30),(13,54,31),(14,46,32),(15,47,33),(16,48,34),(17,49,35),(18,50,36),(19,157,60),(20,158,61),(21,159,62),(22,160,63),(23,161,55),(24,162,56),(25,154,57),(26,155,58),(27,156,59),(37,78,64),(38,79,65),(39,80,66),(40,81,67),(41,73,68),(42,74,69),(43,75,70),(44,76,71),(45,77,72),(82,139,95),(83,140,96),(84,141,97),(85,142,98),(86,143,99),(87,144,91),(88,136,92),(89,137,93),(90,138,94),(109,121,150),(110,122,151),(111,123,152),(112,124,153),(113,125,145),(114,126,146),(115,118,147),(116,119,148),(117,120,149)], [(1,109,95),(2,110,96),(3,111,97),(4,112,98),(5,113,99),(6,114,91),(7,115,92),(8,116,93),(9,117,94),(10,156,67),(11,157,68),(12,158,69),(13,159,70),(14,160,71),(15,161,72),(16,162,64),(17,154,65),(18,155,66),(19,73,29),(20,74,30),(21,75,31),(22,76,32),(23,77,33),(24,78,34),(25,79,35),(26,80,36),(27,81,28),(37,48,56),(38,49,57),(39,50,58),(40,51,59),(41,52,60),(42,53,61),(43,54,62),(44,46,63),(45,47,55),(82,107,121),(83,108,122),(84,100,123),(85,101,124),(86,102,125),(87,103,126),(88,104,118),(89,105,119),(90,106,120),(127,152,141),(128,153,142),(129,145,143),(130,146,144),(131,147,136),(132,148,137),(133,149,138),(134,150,139),(135,151,140)], [(1,85,147),(2,86,148),(3,87,149),(4,88,150),(5,89,151),(6,90,152),(7,82,153),(8,83,145),(9,84,146),(10,37,21),(11,38,22),(12,39,23),(13,40,24),(14,41,25),(15,42,26),(16,43,27),(17,44,19),(18,45,20),(28,64,62),(29,65,63),(30,66,55),(31,67,56),(32,68,57),(33,69,58),(34,70,59),(35,71,60),(36,72,61),(46,73,154),(47,74,155),(48,75,156),(49,76,157),(50,77,158),(51,78,159),(52,79,160),(53,80,161),(54,81,162),(91,120,127),(92,121,128),(93,122,129),(94,123,130),(95,124,131),(96,125,132),(97,126,133),(98,118,134),(99,119,135),(100,144,117),(101,136,109),(102,137,110),(103,138,111),(104,139,112),(105,140,113),(106,141,114),(107,142,115),(108,143,116)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,81),(7,73),(8,74),(9,75),(10,144),(11,136),(12,137),(13,138),(14,139),(15,140),(16,141),(17,142),(18,143),(19,115),(20,116),(21,117),(22,109),(23,110),(24,111),(25,112),(26,113),(27,114),(28,91),(29,92),(30,93),(31,94),(32,95),(33,96),(34,97),(35,98),(36,99),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,82),(47,83),(48,84),(49,85),(50,86),(51,87),(52,88),(53,89),(54,90),(55,122),(56,123),(57,124),(58,125),(59,126),(60,118),(61,119),(62,120),(63,121),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160),(151,161),(152,162),(153,154)]])
135 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | ··· | 3AO | 6A | 6B | 9A | ··· | 9F | 9G | ··· | 9CF | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 27 | 1 | 1 | 2 | ··· | 2 | 27 | 27 | 1 | ··· | 1 | 2 | ··· | 2 | 27 | ··· | 27 |
135 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | ||||||
image | C1 | C2 | C3 | C6 | C9 | C18 | S3 | C3×S3 | S3×C9 |
kernel | C9×C33⋊C2 | C33×C9 | C3×C33⋊C2 | C34 | C33⋊C2 | C33 | C32×C9 | C33 | C32 |
# reps | 1 | 1 | 2 | 2 | 6 | 6 | 13 | 26 | 78 |
Matrix representation of C9×C33⋊C2 ►in GL6(𝔽19)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 12 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 6 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(19))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,12,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,0,6,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C9×C33⋊C2 in GAP, Magma, Sage, TeX
C_9\times C_3^3\rtimes C_2
% in TeX
G:=Group("C9xC3^3:C2");
// GroupNames label
G:=SmallGroup(486,241);
// by ID
G=gap.SmallGroup(486,241);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,867,3244,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^9=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations